當前位置:律師網大全 - 專利申請 - 微生物育種技術有哪些

微生物育種技術有哪些

其方法通常為自然選育和人工選育兩類,可單獨使用,也可交叉進行。

DNA Shuffling技術

編輯

隨著PCR技術的發展和應用,1994年美國的stemmer提出了壹個全新的人工分子進化技術——DNA Shuffling(又稱洗牌技術),該技術能模擬生物在數百年間發生的分子進化過程,並可在短的實驗循環中定向篩選出特定基因編碼的酶蛋白活性提高幾百倍甚至上萬倍的功能性突變基因。其基本原理是將來源不同但功能相同的壹組同源基因,用DNA核酸酶I進行消化 產生隨機小片段,由這些小片段組成壹個文庫,使之互為引物和模板,進行PCR擴增,當壹個基因拷貝片段作為另壹個基因拷貝的引物時,引起模板轉換,重組因而發生,導入體內後,選擇正突變體作新壹輪的體外重組。壹般通過2-3次循環,課獲得產物大幅度提高的重組突變體。

2自然選育

編輯

對自然界中的微生物,在未經人工誘變或雜交處理的情況下進行分離和純化(見微生物的分離和純化),然後進行純培養和測定(見微生物測定法),擇優選取微生物的菌種。這種方法簡單易行,但獲得優良菌種的幾率小,壹般難以滿足生產的需要。

3人工選育

編輯

分誘變育種和雜交育種兩種。

誘變育種

以誘發基因突變為手段的微生物育種技術。1927年,H.J. 馬勒發現X射線有增加突變率的效果;1944年,C.奧爾巴克首次發現氮芥子氣的誘變效應;隨後,人們陸續發現許多物理的(如紫外線、γ射線、快中子等)和化學的誘變因素。化學誘變因素分為3種:①誘變劑與壹個或多個核酸堿基發生化學變化,使DNA復制時堿基置換而引起變異,如羥胺亞硝酸、硫酸二乙酯、甲基磺酸乙酯、硝基胍、亞硝基甲基脲等;②誘變劑是天然堿基的結構類似物,在復制時參入DNA分子中引起變異,如5-溴尿嘧啶、5-氨基尿嘧啶、8-氮鳥嘌呤和2-氨基嘌呤等;③誘變劑在DNA分子上減少或增加1~2個堿基,使堿基突變點以下全部遺傳密碼的轉錄和翻譯發生錯誤,從而導致碼組移動突變體的出現,如吖啶類物質和壹些氮芥衍生物(ICR)等。誘變育種操作簡便,突變率高,突變譜廣,它不僅能提高產量,改進質量,還可擴大產品品種和簡化工藝條件。如1943年從自然界分離到的青黴素產生菌的效價只有20單位/毫升,經過壹系列的誘變育種後,效價已達40000單位/毫升;金黴素產生菌經誘變後,發酵液中又積累了去甲基金黴素;谷氨酸棒桿菌1299經紫外線誘變後,有的能產賴氨酸,有的能產纈氨酸,增加了產品的種類;土黴素產生菌經誘變後,選到了能減少泡沫的突變菌株,從而提高了發酵罐的利用率。誘變育種的不足是缺乏定向性。

雜交育種

不同基因型的品系或種屬間,通過交配或體細胞融合等手段形成雜種,或者是通過轉化和轉導形成重組體,再從這些雜種或重組體或是它們的後代中篩選優良菌種。通過這種方法可以分離到具有新的基因組合的重組體,也可以選出由於具有雜種優勢而生長旺盛、生物量多、適應性強以及某些酶活性提高的新品系。雜交育種的方式因實驗菌株的生殖方式不同而異,如有性雜交、準性重組、原生質體融合、轉化、轉導、雜種質粒的轉化等;但是,選擇親株、分離群體後代的培養、擇優去劣和雜種遺傳分析的過程基本是相同的。雜交法壹般指有交配反應的菌株進行交配或接合而形成雜種。這種方法適用範圍很廣,在酒類、面包、藥用和飼料酵母的育種,鏈黴菌和青黴菌抗生素產量的提高,曲黴的酶活性增強等方面均已獲得成功。

體細胞融合是在不具性反應的品系或種屬間細胞融合和染色體重組,先用酶溶解細胞壁,再用氯化鈣-聚乙二醇處理原生質體,促使融合,獲得雜種。此法在工業微生物的菌種改良中有積極作用。

轉化和轉導首先應用於細菌,現已廣泛用於鏈黴菌和酵母菌等。隨著重組DNA技術的發展,重組質粒的構建和轉化系統的確立,已可將目的基因轉移到受體細胞內,得到能產生具有重要經濟價值的生物活性物質(如疫苗、酶等)的株系。

微生物與釀造工業、食品工業、生物制品工業等的關系非常密切,其菌株的優良與否直接關系到多種工業產品的好壞,甚至影響人們的日常生活質量,所以培育優質、高產的微生物菌株十分必要。微生物育種的目的就是要把生物合成的代謝途徑朝人們所希望的方向加以引導,或者促使細胞內發生基因的重新組合優化遺傳性狀,人為地使某些代謝產物過量積累,獲得所需要的高產、優質和低耗的菌種。作為途徑之壹的誘變育種壹直被廣泛應用。目前,國內微生物育種界主要采用的仍是常規的物理及化學因子等誘變方法。此外,原生質體誘變技術已廣泛地應用於酶制劑、抗生素、氨基酸、維生素等的菌種選育中,並且取得了許多有重大應用意義的成果。

4誘變育種

編輯

1.1物理誘變

1.1.1紫外照射

紫外線照射是常用的物理誘變方法之壹,是誘發微生物突變的壹種非常有用的工具。DNA 和RNA 的嘌呤和嘧啶最大的吸收峰在260nm,因此在260nm 的紫外輻射是最有效的致死劑。紫外輻射的作用已有多種解釋,但比較確定的作用是使DNA 分子形成嘧啶二聚體[1]。二聚體的形成會阻礙堿基間正常配對,所以可能導致突變甚至死亡[2]。

紫外照射誘變操作簡單,經濟實惠,壹般實驗室條件都可以達到,且出現正突變的幾率較高,酵母菌株的誘變大多采用這種方法。

1.1.2電離輻射

γ- 射線是電離生物學上應用最廣泛的電離射線之壹,具有很高的能量,能產生電離作用,可直接或間接地改變DNA 結構。其直接效應是可以氧化脫氧核糖的堿基,或者脫氧核糖的化學鍵和糖- 磷酸相連接的化學鍵。其間接效應是能使水或有機分子產生自由基,這些自由基可以與細胞中的溶質分子發生化學變化,導致DNA 分缺失和損傷[2]。

除γ- 射線外的電離輻射還有X- 射線、β- 射線和快中子等。電離輻射有壹定的局限性,操作要求較高,且有壹定的危險性,通常用於不能使用其他誘變劑的誘變育種過程。

1.1.3離子註入

離子註入是20 世紀80 年代初興起的壹項高新技術,主要用於金屬材料表面的改性。1986 年以來逐漸用於農作物育種,近年來在微生物育種中逐漸引入該技術[3]。

離子註入時,生物分子吸收能量,並且引起復雜的物理和化學上的變化,這些變化的中間體是各類活性自由基。這些自由基,可以引起其它正常生物分子的損傷,可使細胞中的染色體突變,DNA 鏈斷裂,也可使質粒DNA 造成斷裂。由於離子註入射程具有可控性,隨著微束技術和精確定位技術的發展,定位誘變將成為可能[4]。

離子註入法進行微生物誘變育種,壹般實驗室條件難以達到,目前應用相對較少。

1.1.4 激光

激光是壹種光量子流,又稱光微粒。激光輻射可以通過產生光、熱、壓力和電磁場效應的綜合應用,直接或間接地影響有機體,引起細胞染色體畸變效應、酶的激活或鈍化,以及細胞分裂和細胞代謝活動的改變。光量子對細胞內含物中的任何物質壹旦發生作用,都可能導致生物有機體在細胞學和遺傳學特性上發生變異。不同種類的激光輻射生物有機體,所表現出的細胞學和遺傳學變化也不同[5]。

激光作為壹種育種方法,具有操作簡單、使用安全等優點,近年來應用於微生物育種中取得不少進展。

1.1.5 微波

微波輻射屬於壹種低能電磁輻射,具有較強生物效應的頻率範圍在300MHz~300GHz,對生物體具有熱效應和非熱效應。其熱效應是指它能引起生物體局部溫度上升。從而引起生理生化反應;非熱效應指在微波作用下,生物體會產生非溫度關聯的各種生理生化反應。在這兩種效應的綜合作用下,生物體會產生壹系列突變效應[6]。

因而,微波也被用於多個領域的誘變育種,如農作物育種、禽獸育種和工業微生物育種,並取得了壹定成果。

1.1.6 航天育種

航天育種,也稱空間誘變育種,是利用高空氣球、返回式衛星、飛船等航天器將作物種子、組織、器官或生命個體搭載到宇宙空間,利用宇宙空間特殊的環境使生物基因產生變異,再返回地面進行選育,培育新品種、新材料的作物育種新技術。空間環境因素主要有微重力,空間輻射,以及其它誘變因素如交變磁場,超真空環境等,這些因素交互作用導致生物系統遺傳物的損傷,使生物發生諸如突變、染色體畸變、細胞失活、發育異常等。

航天育種較其它育種方法特殊,是航天技術與微生物育種技術的有機結合,技術含量高,成本高,個體研究者或壹般研究單位都難以實現,只能與航天技術相結合,由國家來完成。

1.1.7 常壓室溫等離子體誘變育種

常壓低溫等離子體(Atmospheric and Room Temperature Plasma)簡稱為ARTP,指能夠在大氣壓下產生溫度在25-40 °C之間的、具有高活性粒子(包括處於激發態的氦原子、氧原子、氮原子、OH自由基等)濃度的等離子體射流。ARTP技術作為壹種新型的物理方法,在微生物誘變育種領域有著廣闊的應用前景。

等離子體中適當劑量的活性粒子作用於微生物,能夠使微生物細胞壁/膜的結構及通透性改變,並引起基因損傷,菌株出現遺傳物質損傷後,微生物啟動SOS修復機制,其誘導產生DNA聚合酶Ⅳ和V,它們不具有3ˊ核酸外切酶校正功能,於是在DNA鏈的損傷部位即使出現不配對堿基,復制仍能繼續前進。在此情況下允許錯配可增加存活的機會。ARTP對遺傳物質造成的損傷,多樣性較高;又SOS誘導修復本身為容錯性修復,因此,ARTP多樣性的損傷將可能在修復過程中包容於DNA鏈中,在微生物進行復制修復時,其可能帶來多樣性的錯配可能。

ARTP應用於微生物突變育種,成本低、操作方便,沒有很多物理誘變設備(如離子束註入等)所需的離子或電子加速、真空和制冷等附屬設備;ARTP對遺傳物質的損傷機制多樣,具有較高的正突變率,突變性能多樣,對於真菌、細菌、藻類等都有效果;ARTP對環境無汙染,保證操作者的人身安全,無論用何種氣體放電,其均無有害氣體產生。[1]

5化學誘變

編輯

2.1.1 烷化劑

烷化劑能與壹個或幾個核酸堿基反應,引起DNA 復制時堿基配對的轉換而發生遺傳變異,常用的烷化劑有甲基磺酸乙酯、亞硝基胍、乙烯亞胺、硫酸二乙酯等。

甲基磺酸乙酯(ethylmethane sulphonate,EMS) 是最常用的烷化劑,誘變率很高。它誘導的突變株大多數是點突變,該物質具有強烈致癌性和揮發性,可用5%硫代硫酸鈉作為終止劑和解毒劑。

N- 甲基- N'- 硝基- N- 亞硝基胍(NTG) 是壹種超誘變劑,應用廣泛,但有壹定毒性,操作時應該註意。在堿性條件下,NTG 會形成重氮甲烷(CH2N2),它是引起致死和突變的主要原因。它的效應很可能是CH2N2 對DNA 的烷化作用引起的[2]。

硫酸二乙酯(DMS) 也很常用,但由於毒性太強,目前很少使用。乙烯亞胺,生產的較少,很難買到。使用濃度0.0001%~0.1%,高度致癌性,使用時需要使用緩沖液配置。

2.1.2 堿基類似物

堿基類似物分子結構類似天然堿基,可以摻入到DNA 分子中導致DNA 復制時產生錯配,mRNA 轉錄紊亂,功能蛋白重組,表型改變。該類物質毒性相對較小,但負誘變率很高,往往不易得到好的突變體。主要有5- 氟尿嘧啶(5- FU) 、5- 溴尿嘧啶(5- BU) 、6- 氯嘌呤等。程世清等[25]用5- BU 對產色素菌(分枝桿菌T17- 2- 39) 細胞進行誘變,生物量平均提高22.5%.

2.1.3 無機化合物

誘變效果壹般,危險性較小。常用的有氯化鋰,白色結晶,使用時配成0.1%~0.5%的溶液,或者可以直接加到誘變固體培養基中,作用時間為30min~2d。亞硝酸易分解,所以現配現用。常用亞硝酸鈉和鹽酸制取,將亞硝酸鈉配成0.01~0.1mol/L 的濃度,使用時加入等濃度等體積的鹽酸即可。

2.1.4 其他

鹽酸羥胺,壹種還原劑,作用於C 上,使G- C 變為A- T。也較常用,使用濃度為0.1%~0.5%,作用時間60min~2h。

此外,誘變時將兩種或多種誘變因子復合使用,或者重復使用同壹種誘變因子,效果更佳。顧正華等[7]以谷氨酸棒桿菌ATCC- 13761 為出發菌株,經DMS 和NTG 多次誘變處理,獲得壹株L- 組氨酸產生菌。

2、誘變劑

2.1 誘變劑的選擇

在選擇誘變劑時,需要註意誘變劑的專壹性,即某壹誘變劑或誘變處理優先使基因組的某些部分發生突變而別的部分即使有也很少發生突變。對誘變劑專壹性的分子基礎不十分了解萬盡管有關的修復途徑必定對此有影響,但它們的關系並不那麽簡單,其它各種因素,包括誘變處理的環境條件也能影響突變類型。

工業遺傳學家很難正確地預言改良某壹菌種時需要何種類型的分子水平的突變。因此,為了產生類型盡可能多的突變體,最適當的方法是采用幾種互補類型的誘變處理。遠紫外無疑是所有誘變劑中最為合適的,似乎可以誘導所有已知的損傷類型。采取有效、安全的預防方法也很容易。在化學誘變劑中,液體試劑比粉末試劑更易進行安全操作。的另壹個不利因素是它有產生緊密連鎖的突變叢的趨勢,盡管這種效應在某些體系中能成為有利條件。最後,必須認識到可能某些特異菌系用某些誘變劑是不能被誘變的。當然這壹點通過測定易檢出的突變體,如抗藥性突變體或原養型回復突變體的誘變動力學可以相當容易地得到驗證。[8]

2.2 誘變劑的劑量

從隨機篩選的最佳效果看,誘變劑的最適劑量就是在用於篩選的存活群體中得到最高比例的所需要的突變體,因為這會使在測定效價的階段更省力。

因此在菌株改良以前,為了決定所用誘變劑的最適劑量,並為突變性的增強技術打下基礎,聰明的做法通常是測定不同誘變劑處理不同菌種時的突變動力學。用高單位突變本身來測定最適劑量有時是不可能的,因為這種突變的檢測很困難。但如使用容易檢出的標記如耐藥標記,只要估計到方法的局限性,還是可以提供壹些有價值的資料的。

  • 上一篇:挖方巖石邊坡綠化技術?
  • 下一篇:為什麽咱們國家有些大學在世界上排名那麽靠後還有人去
  • copyright 2024律師網大全